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ABSTRACT
By analyzing features of users’ typing, Automatic White-
out++ detects and corrects up to 32.37% of the errors made
by typists while using a mini–QWERTY (RIM Blackberry
style) keyboard. The system targets “off-by-one” errors
where the user accidentally presses a key adjacent to the
one intended. Using a database of typing from longitudinal
tests on two different keyboards in a variety of contexts, we
show that the system generalizes well across users, model of
keyboard, user expertise, and keyboard visibility conditions.
Since a goal of Automatic Whiteout++ is to embed it in
the firmware of mini-QWERTY keyboards, it does not rely
on a dictionary. This feature enables the system to correct
errors mid-word instead of applying a correction after the
word has been typed. Though we do not use a dictionary,
we do examine the effect of varying levels of language
context in the system’s ability to detect and correct erroneous
keypresses.
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INTRODUCTION
The mini–QWERTY keyboard is a mobile two–handed key-
board that is built into many mobile devices such as mobile
phones and personal digital assistants. The mini–QWERTY
keyboard often takes the place of the mobile phone keypad
on mobile phones such as the RIM Blackberry, the Palm
Treo, or T-Mobile Sidekick (see Figure 1). The keyboard
has the same layout as a full desktop QWERTY keyboard,
complete with a spacebar, delete key, return key, and other
non-letter keys (arrow keys, shift, etc.).
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Figure 1. Commercial mobile phones with mini–QWERTY keyboards
such as the Danger/T–Mobile Sidekick

Though there has been little work published on mini–
QWERTY keyboards [1–3], there exists a canon of research
in the area of mobile text input. Mobile text input systems
employ either physical, button–based, input systems (e.g.
mini–QWERTY keyboards, phone keypads, half–QWERTY
keyboards [14], Twiddlers, etc.) or software, touchscreen–
based systems (e.g. on–screen keyboards like the iPhone or
other pen–stroke based systems). This paper focuses on the
former.

Physical keyboards on mobile phones have decreased in size
though the size of the average human hand remains constant.
These small form–factor keyboards can be accommodated
in two ways: make the keys very small, like on mini–
QWERTY keyboards, or remove the one–to–one mapping
between keys and characters. Much recent research has
focused on the latter approach evaluating existing systems
[7, 10, 11, 19, 20], designing and evaluating new systems to
increase input rates and accuracies [11, 18, 19], or building
models or taxonomies to further explain current practices
[12, 15, 20].
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Mini–QWERTY keyboard typists typically employ two–
thumbs when operating a mobile device. Mini–QWERTY
keyboards have the same one–to–one key–to–letter ratio as
seen on a full desktop QWERTY keyboard. In order to
fit so many keys into the space normally occupied by the
twelve keys of a mobile phone keypad, the letter keys need
to be very small and densely packed together on the mobile
device. It is not uncommon for this design to result in
keyboards that contain keys with a surface area of less than
25 mm2 and inter–key spacings of less than two millimeters.
The keys are significantly smaller than a user’s thumbs
which results in difficulty of use. The user’s thumbs occlude
visibility of the keys, introducing ambiguity as to which
key was actually pressed. Further, Fitts’ Law implies that
typing accuracy decreases as typing speed increases due to
the relationship between target size, movement speed, and
accuracy [17]. Taken together, these effects combine to lead
to errors in mini-QWERTY keyboard text input where a
user’s thumb presses multiple keys at the same time (usually
pressing the key either to the left or the right of the intended
key ) or presses the intended key twice [2].

We previously performed an analysis of errors that occur
when people type on mini–QWERTY keyboards [2] and
found that off–by–one errors account for approximately 45%
of the total errors committed. Off–by–one errors consist up
of row substitution and row insertion errors. A row error
occurs when the unintended key press (the error) occurs in
the same row on the keyboard as the intended key press1.
Off–by–one errors are:

• Row substitution error – occurs when the user uninten-
tionally presses a key directly to the left or to the right of
the intended key (e.g. a user types “cay” or “car” when
she intended to type the word “cat”).

• Key repeat error – occurs when a user unintentionally
presses the same key twice (e.g. the user types “catt”
when she intended to type “cat”).

• Roll–on insertion error – occurs when a character is
inserted before the intended character (e.g. the user types
“cart” when she intended to type “cat”).

• Roll–off insertion error – occurs when the character is
inserted after the intended character (e.g. the user types
“catr” when she intended to type “cat”).

Noticing that these types of errors occur frequently inspired
us to attempt to employ machine learning techniques to au-
tomatically detect and correct these errors based on features
of the users’ typing.

The previous version of the system, Automatic Whiteout [4],
was only able to detect and correct insertion errors (roll–on,
roll–off, and key repeats) that occur in expert typing data.
It employed decision trees, a machine learning technique, to
detect errors by recognizing patterns in certain features of

1Column errors occur rarely in mini–QWERTY keyboard text
input and as such are not included in our definition of off–by–one
errors

the user’s typing. Having identified an error the algorithm
corrected the error by simply deleting the errorful character.
Theoretically the initial system was able to detect and correct
26.41% of the expert typing errors on a single keyboard.

AUTOMATIC WHITEOUT++
Automatic Whiteout++ extends our previous algorithm with
better features for roll–on, roll–off and key repeat errors. Us-
ing these new features, we compare Automatic Whiteout++
to Automatic Whiteout on our expert typing data. Addition-
ally, Automatic Whiteout++ allows for the correction of off–
by–one substitution errors. Furthermore, we demonstrate
how Automatic Whiteout++ could be incorporated into a
mobile device by showing that it is generalizable. Specif-
ically, in this paper we demonstrate that the algorithm can
generalize to different levels of user expertise, to different
models of keyboards, and to typists inputting text in condi-
tions of limited feedback. Finally, we evaluate the effect of
the correction on overall keystroke accuracy and discuss how
our algorithm can be employed to improve mobile text input
on mini–QWERTY keyboards with the goal of correcting
errors before they are noticed by the user.

Automatic Whiteout++ incorporates more features than its
predecessor (82 vs. 36). Many of these new features take
advantage of simple language features, specifically bi–letter
and tri–letter frequencies. While Automatic Whiteout++
does not include a dictionary, we do include letter proba-
bility tables based on a large plain–text corpus. We have
also allowed the algorithm to look at subsequent keypresses
(in addition to prior keypresses) when evaluating a potential
error. We call the number of additional keys that the
algorithm evaluates first- and second-order contexts. In
all our tests, we only use symmetrical contexts (e.g. the
first order context is one keystroke in the future as well as
one keystroke in the past). In the section Generalization
Across Corpora, we explore how context improves system
performance. In addition to these new features, we also
use the features from the previous system such as the keys
pressed, the timing information between past and subsequent
keystrokes around the letter in question, a letter’s frequency
in English, and the physical relationship between keystrokes
(whether the keys involved are located physically adjacent
to each other horizontally).

While the decision trees can become quite complex, a
simplified example of how Automatic Whiteout++ classifies
roll–off insertion errors is illustrative (see Figure 2). The
roll–off classifier first determines if the key of the letter it
is inspecting (in this case the letter “Y”) is located on the
keyboard either one key to the left or to the right of the
key of the previous letter (in this case, the letter “T”). Next
it examines if the time between the previous keystroke and
the current keystroke is less than or equal to a threshold (in
this case 47 milliseconds). In our testing below, this timing
information is the key to correcting errors without mistakes.
Finally, Automatic Whiteout++ compares the probability of
the current key to the probability of the previous key given
each key combination’s specific tri–letter frequencies and
then classifies the current key as a roll–off insertion error
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Figure 2. Example Roll–Off Decision Tree.

according to these probabilities. In this case, the three
letter combination “CAT” occurs much more frequently in
English that the three letter combination “CAY”. Similar
trees are learned for detecting the other types of errors as
well. The final Automatic Whiteout++ system tests each
keystroke as a key repeat, roll–on, roll–off, and substitution
error sequentially, stopping the process and correcting the
keystroke if any test returns a positive result.

The correction of roll–on, roll–off, and key repeat insertion
errors is relatively simple. The system deletes the offending
key stroke thus removing the insertion. Substitution errors,
however, require more information to correct. Letter fre-
quency, bi–letter frequency, and tri–letter frequency are used
to help correct off–by–one substitution errors. When Auto-
matic Whiteout++ determines that a substitution error has
happened, it compares the letters to the right and left of the
key typed and selects the most probable one. For example,
if the user types “t h r” and the system determines that a
substitution error has occurred, the possible alternatives are
“t h t” or “t h e”. Since “the” is more likely than “tht”
based on the tri–letter frequencies, Automatic Whiteout++
replaces the “r” with an “e”. A similar technique for letter
disambiguation was used by Goodman et al. [6] previously.

EXPERIMENTAL DATA
Our data set is the output of two longitudinal studies that
investigate mini–QWERTY keyboard use [1, 3] (see Table
1). Fourteen participants who had no prior experience with
mini-QWERTY keyboard typing participated in the original
study [1]. The participants were randomly divided into two
subject groups, each of which was assigned to use one of two
different keyboard models (see Figure 3). The participants
used the assigned keyboard throughout the study. All
fourteen participants completed twenty 20–minute typing

Figure 3. The Targus (top) and Dell (bottom) mini–QWERTY
keyboards used in both studies (rulers are indicating centimeters).

sessions for a total of 400 minutes of typing. Eight subjects
continued to the “blind” study (see below).

We employed the Twidor software package (used in our
series of studies on the Twiddler chording keyboard [9]),
and adapted it to accept data from our modified keyboards.
Phrases were served to participants in blocks of ten. Par-
ticipants typed as many blocks of ten phrases as they could
during a single twenty minute session. The phrases were
taken from a set of 500 phrases designed by MacKenzie
and Soukoreff for use in mobile text entry studies [13]. The
canonical set was altered to use American English spellings
as this study took place in the United States. Additionally,
we altered the set so that there was no punctuation or
capitalization in any of the phrases in the set. Twidor
displays a phrase to the user, the user inputs the phrase
and Twidor displays the text produced by the user. Twidor
records the user’s words per minute (WPM) and accuracy
(ACC) and displays both the WPM and the ACC of the input
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Figure 4. The Twidor experimental software used in both the original
and the blind studies.

Original Study Blind Study
Date Fall 2004 Spring 2005
Participants 14 8
Expertise Novice Expert
Sessions 20 5
Conditions 2 6
Phrases Typed 33,947 8393
Keystrokes Typed 1,012,236 249,555
Total Phrases Typed 42,340
Total Keystrokes Typed 1,261,791

Table 1. The complete mini-QWERTY data set.

phrase to the user (see Figure 4). Twidor also displays a
user’s average WPM and ACC calculated over the course of
the session as well.

In the original study, the participants typed 33,945 phrases
across all sessions, encompassing over 950,000 individual
characters. Participants were compensated proportional to
their typing rate and accuracy over the entire session: $0.125
× wpm × accuracy, with a $4 minimum for each twenty
minute session. Averaged over both keyboards, participants
had a mean first session typing rate of 31.72 wpm. At the end
of session twenty (400 minutes of typing) the participants
had a mean typing rate of 60.03 wpm. The average accuracy
rate (as measured using MacKenzie and Soukoreff’s Total
Error Metric [16]) for session one was 93.88% and gradually
decreased to 91.68% by session twenty.

Previously, we investigated participants’ ability to input text
with limited visual feedback from both the display and the
keyboard [3]. In the text input community, studies that
examine the entering of text in visually occluded conditions
are known as “blind” text input studies. Therefore, we refer
to this study as the blind study (see Table 1). When mobile,
users must split their attention between the environment and
the device with which they are interacting. To simulate
this notion of partial attention being paid to the device,
we designed a study to investigate typing in conditions
of limited visual feedback. Previously we had found that
users can effectively type in such “blind” conditions with

Data Set phrases key presses errors OBOs OBO %
Expert Dell 4,480 64,482 2,988 1,825 61.08%
All Targus 16,407 246,966 8,656 4,983 57.56%
All Dell 15,657 272,230 9,748 6,045 62.01%
Blind Targus 3,266 30,187 2,795 2,072 74.13%
Blind Dell 3,516 29,873 3,287 2,527 76.88%

Table 2. The sampled data sets used for all training and testing of
Automatic Whiteout++.

the Twiddler one–handed keyboard [8]. In the blind study
we examined blind typing on mini–QWERTY keyboards in
which eight expert mini–QWERTY typists participated in
5 typing sessions. The expert subjects for this study had
all previously participated in the original study and used
the same keyboard in the blind study that they had learned
earlier. Unlike the original study, each session now consisted
of three twenty–minute typing conditions.

In the first condition, the “normal” condition, the partici-
pants had full visual access to both the keyboard and the
display. This condition is the same condition that was
used in the original study. In the second condition, “hands
blind,” we obstructed the view of the keyboard by making
the participants type with their hands under a desk. Though
they could not see their hands, the participants were able
to view the display in the same manner as when typing in
the normal condition. The final “fully blind” condition not
only obstructed the view of the keyboard by making the
participants type with their hands under the desk but also
reduced visual feedback from the display. In this condition
the participant could see the phrase to type but not their
actual output. Instead, a cursor displayed the participants’
location within the phrase as they typed, but no actual
characters were shown until the participant indicated the
completion of the phrase by pressing the enter key. At
that time, the participant’s output was displayed, and the
participant could then re–calibrate the position of her hands
on the keyboard if necessary.

The 8 participants typed 8,393 phrases across all sessions
for a total of 249,555 individual key presses. In contrast to
our Twiddler work, we found that in the visually impaired
conditions, typing rates and accuracies suffer, never reaching
the non–blind rates. Averaged over both keyboards in the
blind mini–QWERTY conditions, our participants had a
mean first session typing rate of 38.45 wpm. At the end
of session five (200 minutes of typing) the participants had
a mean typing rate of 45.85 wpm. The average accuracy
rate for session one was 79.95% and gradually increased to
85.60% by session five.

Combining both studies we collected 42,340 phrases and
1,261,791 key presses. The data set discussed in this paper
is available for public use and can be found at
http://www.cc.gatech.edu/∼jamer/mq/data.

Sampling the Experimental Data
We analyzed the data from all sessions of both data sets
and identified each character typed as either correct or as an
error. If a phrase contained an error, the characters up to and
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including the error were kept but the characters that occurred
after the initial error were discarded. Truncating the phrase
in this manner avoids errors that may have cascaded as an
artifact of the data collection. Specifically, Twidor highlights
errors as the user enters them. Providing users with visual
feedback that indicates when they make mistakes potentially
distracts the user, increasing her cognitive load and forcing
her to make a decision about whether or not to correct the
error. This disruption in the participant’s natural behavior
potentially effects performance, hence the truncation after
the initial error. If the initial error is one of the first two
characters in the phrase, the entire phrase is discarded.
Additionally, all of the session in which participants entered
text in the “normal condition” were removed from the blind
study and are not used in our analysis. Sampling our data
set reduces the number of phrases and key strokes typed to
30,896 and 449,032 respectively. The sampled set contains
20,879 total errors and 13,401 off–by–one errors.

Data Sets: Dell complete, Dell expert, Targus complete,

and blind
The experimental data set was further segmented into four
sets for training and testing purposes: Dell complete, Dell
expert, Targus complete, and blind (see Table 2 for the
distribution of data across the various sets). We analyzed
the data for all twenty typing sessions for the Dell keyboard
(Figure 3 bottom). The complete set of Dell data contain
15,657 phrases, 272,230 key presses, 9,748 errors, and 6,045
off–by–one errors.

By the time participants began the 16th typing session in
the original study they were considered to be expert typists
(their learning curves had flattened). We analyzed the data
for the last five typing sessions. This subset of the Dell
data contain 4,480 phrases, 64,482 key presses, 2,988 errors,
and 1825 off–by–one errors and represents expert usage of
a mini–QWERTY keyboard. Of the two keyboards used in
the studies, the keys on the Dell keyboard are smaller and
are more tightly clustered.

Next we analyzed the data for all twenty typing sessions
in the original study for the Targus keyboard (Figure 3
top). The complete set of the Targus data contain 16,407
phrases, 246,966 key presses, 8,656 errors, and 4,983 off–
by–one errors. The Targus keyboard is the larger of the two
keyboards. The keys are large, spaced further apart, and are
more ovoid than the keys on the Dell keyboard.

The blind data set consists of data from both the Dell and
the Targus keyboards. Four participants per keyboard typed
in two different blind conditions for five sessions. The blind
conditions have been combined to form one set of data (wpm
and accuracy performance in the different conditions was not
statistically significantly different). This data set comprises
200 minutes of typing from eight different participants, four
of whom used Dell keyboards, and four of whom used
Targus. The blind set of data contains 6360 phrases, 55,642
key presses, 5874 errors, and 4326 off–by–one errors.

Training
To detect off–by–one errors, we use the Weka [5] J48
algorithm to learn decision trees with metacost to weight
strongly against false positives (10X). Weighting so heavily
against false positives helps to ensure that Automatic White-
out++ minimizes the number of errors that it introduces
to the user’s typing output. This attribute is important as
degrading the user experience is the certainly not a goal of
the algorithm.

From the expert Dell data in the original study we randomly
assigned 10% of the phrases to be an independent test set
and declared the remaining 90% to be the training set. We
did not examine the independent test set until all features
were selected and the tuning of the algorithm was complete.

From the training set we iteratively built a series of four
training subsets, one for each error classifier (roll–on, roll–
off, repeats, and substitutions). The training subsets were
built by sampling from the larger training set; each subset
was designed to include positive examples of each error
class, a random sampling of negative examples, and a
large number of negative examples that previously generated
false positives (i.e., likely boundary cases). Due to our
desire to avoid incorrectly classifying a correct keystroke
as an error, we iteratively constructed these training sets
and searched for proper weighting parameters for penalizing
false positives until we were satisfied with the classification
performance across the training set. For a list of the most
discriminative features for each error classifier, see Table 3.

THE EVALUATION OF AUTOMATIC WHITEOUT++
In the following sections, we demonstrate that Automatic
Whiteout++ can successfully generalize across users as
well as across different levels of user expertise, different
visibility conditions (such as typing while not looking at the
keyboard), and different models of keyboards (see Table 4).

Automatic Whiteout++ vs. Automatic Whiteout
Using the expert Dell data set from the original study, we
employed “leave–one–out” testing in which we train on
data from six of the seven users and test on data from the
seventh user. We iterate though this procedure to generates
seven combinations of training and test users which yields an
approximation of the correction rate Automatic Whiteout++
would achieve when applied to a user whose data is not in
the data set.

Comparing the performance of our previous work Automatic
Whiteout [4] (Table 5), to Automatic Whiteout++ (Table
6), we find that the performance of Automatic Whiteout++
improves for every class of errors and that the solution as
a whole performs considerably better (corrects 46.89% vs.
34.63% of off–by–one errors resulting in a total error rate
reduction of 28.64% instead of 26.41%). Roll-on detection
rates improved from 47.56% to 64.43%, but roll-off and
key repeat detection rates were similar. Most notable is
the ability of Automatic Whiteout++ to detect and correct
off–by–one substitution errors (this ability did not exist
in Automatic Whiteout). While substitution errors remain
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Repeats
Feature Name Description
sameasprev that the current key press is the same letter as the previous key press
prob frequency of finding the current key preceded by the previous two keys. P(X given X-2, X-1)
prevdt The dt between the current key and the previous key. dt(X,X-1)
nextnext X+2 ’s ascii value

Roll–On
dt The time between the previous key and the current key dt(X-1, X)
prevcuradjacent True if and only if the current key is physically adjacent to the previous key.
neighborprobdiff P(X given X-2, X-1) - P(bestneighbor given X-2, X-1)

Roll–Off
futdt The time between the current key and the next key dt(X, X+1)
curfutadjacent True if and only if the current key is physically adjacent to the next key typed.
prob frequency of finding the current key preceded by the previous two keys. P(X given X-2, X-1)

Substitutions
neighborprobdiff P(X given X-2, X-1) - P(bestneighbor given X-2, X-1)
prob frequency of finding the current key preceded by the previous two keys. P(X given X-2, X-1)
neighborprob the probability of the best neighbor occurring after X-2,X-1
futisletter True if and only if the next key is in [a-z ]

Table 3. The most discriminative features learned by the system for each error classifier, ordered by importance.

across expert–users across expertise across keyboards across visibility
train test train test train test train test

Keyboard Dell Dell Dell Dell Dell Targus Dell (original) Targus (blind)
Users 6 of 7 7th 6 of 7 7th 7 7 7 4

(leave–1–out) (leave–1– out) (leave–1– out) (leave–1– out)
Sessions Expert Expert All All All All All All

(16–20) (16–20) (1–20) (1–20) (1–20) (1–20) (1–20) (1–5)

Table 4. Summary of training and independent test sets for each of our experiments detailing keyboard, users, and sessions. All tests are user–
independent except for the Dell blind study.

Error Type Avg. Avg. Avg. Avg.
corrections detected wrong OBO error
(possible) corrections reduction

Roll–On 27.86(58.57) 47.56% 1.0 10.30%
Roll–Off 52.00(64.71) 80.35% 1.71 19.29%
Repeats 13.86(25.29) 54.79% .71 5.04%
Automatic

Whiteout 93.71(146.71) 63.87% 3.43 34.63%

Table 5. Original performance of Automatic Whiteout (from [4])
averaged across seven user–independent tests on the expert Dell data
set. Note the absence of substitution corrections

difficult to detect and correct, we can significantly improve
results if we keep false positives low. Overall, Automatic
Whiteout++ corrects approximately 47% of the off–by–one
errors in the data set.

Generalization Across User Expertise
In our preliminary work, we felt that Automatic Whiteout
would only be suitable for expert mini-QWERTY typists.
Using the new features of Automatic Whiteout++ allows
us to further discriminate between correct and incorrect
keystrokes and extend the algorithm to correct errors from
less experienced typists.

Using the entire Dell data set from the original study we
tested the ability of Automatic Whiteout++ to generalize
across various levels of user expertise. Again we per-
formed leave–one–out testing. This test yields the rate
that Automatic Whiteout++ will detect and correct off–by–
one errors at any level of expertise from complete novices

Error Type Avg. Avg. Avg. Avg.
corrections detected wrong OBO error

(possible) corrections reduction
Roll–On 37(57.4) 64.43% 2.9 13.36%
Roll–Off 53(63.9) 83.00% 2.3 19.71%
Repeats 14.7(25.9) 56.91% 0.6 5.30%
Subs 25.4(103.1) 24.24% 3.1 8.50%
AW++ 120.9(250.3) 48.29% 8.9 46.89%

Table 6. Automatic Whiteout++ across expert users by training and
testing on the expert Dell data set. Automatic Whiteout++ performance
averaged across seven user–independent tests. On average, users made
260.71 off–by–one errors.

(someone who had never used a mini–QWERTY keyboard
before) to expert mini–QWERTY keyboard typists. Table 7
shows the results from these tests which are quite encourag-
ing. Given our subject set (expert desktop keyboard users
but novice mini–QWERTY users), Automatic Whiteout++
could have improved their typing accuracies significantly
at all stages of their training. This result suggests that
Automatic Whiteout++ can assist both novice and expert
users of such keyboards. It is interesting to note that the
percentage of average off–by–one error reduction decreased
slightly for roll–on and roll–off errors. This result is because
the proportion of these errors as compared to total off–by–
one errors increases as the user gains experience.

Generalization Across Keyboards
Using both the entire Dell and Targus data sets from the
original study we demonstrate that Automatic Whiteout++
can successfully generalize across different models of mini–
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Error Type Total. Avg. Total. Avg.
corrections detected wrong OBO error
(possible) corrections reduction

Roll–On 762(1034) 73.69% 44 12.16%
Roll–Off 1092(1234) 88.49% 38 17.46%
Repeats 485(649) 74.73% 9 7.97%
Subs 1120(2888) 37.02% 181 14.69%
AW++ 3136(5805) 54.02% 272 52.20%

Table 7. Automatic Whiteout++ across expertise by employing leave–
one–out user testing. Trained and tested across all sessions of the Dell
data set, Automatic Whiteout++ performance is averaged across seven
user–independent tests.

Error Type Total. Avg. Total. Avg.
corrections detected wrong OBO error
(possible) corrections reduction

Roll–On 441(666) 66.22% 29 8.55%
Roll–Off 635(765) 83.01% 25 12.26%
Repeats 717(909) 78.88% 9 14.33%
Subs 796(2383) 32.52% 127 13.00%
AW++ 2378(4723) 50.35% 190 48.05%

Table 8. Automatic Whiteout++ across different keyboard models.
Automatic Whiteout++ was trained on the entire Dell set and was tested
on the entire Targus data set from the original experiment.

QWERTY keyboards. Though all mini–QWERTY key-
boards by definition have the same alphabetic keyboard
layout, not all keyboards have the same sized keys or the
same inner–key spacings. As such, not all mini–QWERTY
keyboards are used in the same manner. Generalizing across
different keyboard models demonstrates the applicability of
using the Automatic Whiteout++ solution successfully in
mobile devices using different models of mini–QWERTY
keyboards.

Perhaps the strongest result in this study (Table 8) is that
Automatic Whiteout++ generalized across keyboards. The
system had not been trained on either the Targus keyboard or
its users’ typing in this data set. Yet the system still corrected
almost half of the off–by–one errors, corresponding to over
a quarter of the total errors made.

Comparing Table 8 to Table 7 which were both trained on
all the Dell data (both novice and expert) shows that the
types of errors detected were similarly successful across
both keyboards. However, despite being trained on Dell
data, the Targus keyboard had a lower error rate in general
and proportionally fewer roll–on and roll–off errors than
the Dell keyboard (probably due to the larger keys of the
Targus). Key repeat errors were more common on the
Targus, resulting in key repeats having a larger effect on the
total off–by–one error reduction, while roll–ons and roll–
offs had a lesser effect.

Generalization Across Different Visibility Conditions
To generalize across typing in different visibility conditions,
we again used the entire Dell data set from the original study
to train the system. As in the previous section, we test on
data from both the Dell and the Targus keyboards. However,
for this analysis, we use the data for both keyboards from
the blind study to evaluate the effectiveness of Automatic
Whiteout++ on errors from typing in conditions of limited

Error Type Total. Avg. Total. Avg.
corrections detected wrong OBO error

(possible) corrections reduction
Dell

Roll–On 166(252) 65.87% 18 5.90%
Roll–Off 188(213) 88.26% 13 6.99%
Repeats 43(70) 61.43% 6 1.49%
Subs 581(1941) 28.75% 37 20.63%
AW++ 881(2476) 35.58% 74 34.95%

Targus (User Independent)
Roll–On 68(114) 59.65% 8 2.95%
Roll–Off 138(169) 81.66% 1 6.69%
Repeats 71(92) 77.17% 1 3.38%
Subs 415(1650) 24.06% 37 17.37%
AW++ 627(2025) 30.96% 47 30.32%

Table 9. Automatic Whiteout++ across different visibility conditions.
Automatic Whiteout++ was trained on the entire Dell set and was tested
on the blind Dell as well as the blind Targus data sets.

feedback. In addition to performing a user–independent
test on the blind Targus data, we also tested on the blind
Dell data. In the original experiment there were seven Dell
keyboard users. Four of those seven users participated in
the blind study. Due to anonymity procedures for human
subjects testing, we did not retain the identities of the
subjects who continued to the blind study. Thus, we cannot
perform a user–independent test as with our other analyses.
Instead, training on the entire Dell data set and testing on
the blind Dell data set can be considered neither a user–
dependent test nor a user–independent test.

Table 9 shows the results from these tests. As expected,
testing on the blind Dell data performed better than testing
on the blind Targus data. In the Targus condition, the
system was not trained on the users, the keyboard, or the
visibility condition. Yet it still corrected 30.3% of the off–
by–one errors. Arguably, in practice these rates would
be higher because one could train Automatic Whiteout++
on a representative sample of keyboards and operating
conditions. Thus, the 22.5% total error corrected in this
condition might be considered a low value.

Generalization Across Corpora
Up until this point, the results have been calculated using
the letter frequency tables derived from the MacKenzie and
Soukoreff phrase set [13]. The phrase set correlates with
written English at the single letter frequency level at 95%.
However, Automatic Whiteout++ uses bi–gram and tri–gram
letter frequencies to assist in error detection and correction.

Table 10 shows the impact that various amounts of context
have on the ability of Automatic Whiteout++ to successfully
identify and correct errors in mini–QWERTY keyboard text
input. With no context Automatic Whiteout++ is able to
identify and correct 25.85% of all off–by–one errors. Being
able to examine character pairs, Automatic Whiteout++ is
able to identify and correct 35.97% of all off–by–one errors.
Three letter context improves the efficacy of Automatic
Whiteout++ to over 50% (50.32%). Using a dictionary does
not improve the solution as recognition rates drop slightly
from 50.32% to 50.18%. This lack of improved performance
when using a dictionary is worth noting — Automatic
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No Context 1st order 1st + 2nd 1st + 2nd + dict
Roll–On 25.12% 43.03% 64.43% 65.42%
Roll–Off 73.38% 79.42% 83.00% 81.43%
Repeats 6.70% 24.31% 56.91% 59.89%
Subs 3.46% 10.66% 24.24% 23.55%
AW++ 25.85% 35.97% 50.32% 50.18%

Table 10. The averaged results (% of off–by–one errors corrected) of
leave–one–out user training and testing on the expert Dell data set from
the original study using different levels of context.

Whiteout++ is equally successful using a dictionary as it is
without a dictionary. The ability to implement Automatic
Whiteout++ without having to rely on a dictionary enables
the solution to be built directly into the firmware of the
keyboard rather than being built into the software of the
mobile device. As such, the speed performance gained
means that the solution has the potential to detect the error
and display the correction without interrupting the user. We
hypothesize that the ability to detect and correct errors with-
out visually distracting the user (making a correction within
milliseconds before the character is displayed on the screen),
will enable faster rates of input and generally a better user
experience. In the future we plan to test this hypothesis by
running a longitudinal user study of Automatic Whiteout++
to gather human performance data. Additionally, the ability
to implement Automatic Whiteout++ in the firmware of
a mobile device enables it to work in concert with error
correction software native to a particular mobile device.
Automatic Whiteout++ simply would pass already corrected
input to the software correction system which could then
proceed as it would normally on unaltered text.

In general, using a dictionary does not improve the results
above the use of tri–letter frequencies. However, there is
a distinct improvement in results between the use of single
letter frequencies and bi–letter frequencies, and the use of
bi–letter frequencies and tri–letter frequencies. The only
exceptions are the roll–off errors, which have a consistently
high detection rate across language contexts. Given our
features, this result suggests that detection of roll–off errors
are most dependent on key press timings.

Next we perform a sensitivity analysis using different letter
frequency data. We generated up to tri–letter frequencies
from the Wikipedia database downloaded on August 5th,
2007. We processed the data keeping only plain text and
removing all punctuation, tags, markups, tables, etc. Table
11 shows the results of using the Wikipedia letter frequen-
cies on the expert Dell data set. Comparing these results to
those of Table 6 shows average off–by–one error reduction
decreases by approximately 3% (46.89% vs. 43.36%). This
finding gives a more realistic estimate of how the algorithm
would perform on more generalized text.

Sensitivity to Timing
Realizing the important role of timing to the success of
our solution, we embarked upon an analysis to determine
the impact of imprecise clocks on the performance of Au-
tomatic Whiteout++. This analysis was done in an effort
to understand how robust the algorithm is to permutations

Error Type Avg. Avg. Avg. Avg.
corrections detected wrong OBO error

(possible) corrections reduction
Roll–On 34.0(57.4) 59.20% 3.1 12.71%
Roll–Off 54.6(64,7) 84.33% 2.7 21.35%
Repeats 11.6(23.3) 49.69% 0.7 4.49%
Subs 14.1(97.7) 14.47% 2.3 4.85%
AW++ 114.3(243.1) 47.01% 8.9 43.36%

Table 11. Automatic Whiteout++ across expert users by training and
testing on the expert Dell data set with Wikipedia letter frequencies.
Comparing with Table 6, there was a 3.5% absolute reduction in OBO
errors corrected.

Timing Total False Pos Total True Pos Total False Negs
Pure 15 2763 2078
5 19 2739 2102
10 23 2726 2111
50 45 2637 2174
100 43 2535 2151
500 3790 2596 2290
1000 5924 2587 2352

Table 12. A timing sensitivity analysis for Automatic Whiteout++
across expert users by training and testing on the expert Dell
data set with Wikipedia letter frequencies (timing data reported in
milliseconds).

in the timing information it receives from the keyboard.
We artificially reduced the resolution of the timing by
rounding to the nearest 5, 10, 50, 100, 500, and 1000
milliseconds. The impact on the number of false positives
detected by the system can be seen in Table 12. If values
are reported to the system with a resolution of at least
100 milliseconds, relatively successful performance of the
algorithm can be maintained. If the granularity of the timing
information becomes any larger however, the accuracy of the
algorithm suffers and would negatively affect the user. Small
permutations in the precision of the timing information,
however, do not appear to have a large negative impact on
performance.

FUTURE WORK
While we are encouraged by our results, many questions
remain. Leveraging features of the user’s typing and using
Automatic Whiteout++ enables us to detect and correct
errors as the user types, often mid–word. As a result, the
correction can happen almost transparently to the user, and
errors can be fixed before the incorrect character distracts
the user. We believe that such automatic keystroke level
correction might allow the user to sustain rapid typing
speeds since the user will be able to input text without being
distracted by errors. We are very interested in conducting
user evaluations to assess individuals’ reaction to the system
and to collect mini–QWERTY typing speeds and accuracies
both with and without the use of the Automatic Whiteout++
correction system. A longitudinal study that gathers live
data will allow us to determine the effects, and noticeability,
of the system on users. Do users notice the automatic
corrections or the false positives? In an informal pilot
test conducted in preparation for the longitudinal study,
users did not perceive the presence of the correction system
when it was active. However, they did have fewer errors.
Unfortunately, the study was not long enough to determine

CHI 2008 Proceedings · Post-QWERTY QWERTY April 5-10, 2008 · Florence, Italy

580



Test Across %Off–by–one Total Errs Keystrokes
Errs Corrected Corrected Corrected

Expert Users 46.89% 28.64% 1.31%
Expertise 52.20% 32.37% 1.15%
Keyboards 48.05% 27.66% 0.96%
Dell Blind 34.95% 26.87% 2.95%
Targus Blind 30.32% 22.48% 2.08%

Table 13. The results of generalizing Automatic Whiteout++ to
different expert users, to users of differing levels of expertise, to
different keyboards, across visibility conditions and across visibility
conditions and keyboards.

any effect on typing speeds, nor did it reveal whether users
could become dependent upon Automatic Whiteout++ with
long–term use. Expert typists often intuitively “feel” when
they make an error in typing and anticipate it, pressing delete
before visually confirming the error on the screen. How
will Automatic Whiteout++ effect this behavior? Will expert
users pause and verify the impact of their preemptive correc-
tions? Such questions certainly merit further investigation.

CONCLUSION
In general, Automatic Whiteout++ can correct approxi-
mately 25% of the total errors in the data set (1-3% of the
keystrokes typed across users, keyboards, and keyboard and
screen visibility conditions). The system introduces less
than one tenth as many new errors as it corrects. These false
positives could be further reduced with tuning, satisfying
our initial concern of the system becoming too intrusive
to use. These results are surprisingly good, especially
given Automatic Whiteout++ uses only tri–letter frequencies
instead of dictionaries for error detection and correction.

Table 13 provides a summary of the results from this
study. While all conditions yielded approximately a 25%
total error reduction, the percentage of keystrokes corrected
ranged between 1% (in the Targus condition) and 3% (in
the Dell blind condition). This result is explained by the
distribution of errors made in the different conditions. As
Targus users gained experience, they made approximately
25% fewer errors than Dell typists. Meanwhile, in the
blind conditions, users doubled their error rates on both
keyboards. Using these observations and Table 13 as
a guide, Automatic Whiteout++ would seem to be most
effective on smaller keyboards where device visibility is
limited. With consumers buying smaller devices and users’
desire to “multitask” sending mobile e-mail in a variety of
social situations, Automatic Whiteout++ seems well suited
to assist mini–QWERTY typists. If, as we suspect, error
correction is time consuming and errors cascade after the
first error is made, Automatic Whiteout++ may not only
improve accuracies but also improve text entry rates. Future
work will investigate the system’s effect on the learnability
of a keyboard as well as its impact on typing speeds and
accuracy.
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